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The Navier–Stokes equations in a rotating frame of reference
have been formulated in the so-called strong conservative form, i.e.,
without the traditional source terms, viz., the Coriolis and centrifugal
forces. These equations have been coupled with the continuity equa-
tion by using the modified artificial compressibility method in order
to develop an implicit numerical scheme that has third order accu-
racy in space and second order accuracy in time. This scheme uses
the Roe fluxes and the MUSCL extrapolation techniques to obtain
the desired accuracies in space and the backward Euler formula
to obtain the desired time accuracy. The flux Jacobians and their
eigensystem are presented which are required in the development
of the numerical scheme. The resulting scheme was used to solve
the Ekman boundary layer problems with (a) no slip and (b) applied
surface stress boundary conditions and excellent agreement be-
tween computed and exact solutions has been obtained, supporting
the new formulation of the governing equations as well as the
solution procedure. Q 1996 Academic Press, Inc.

1. INTRODUCTION

Fluid flow problems can be analyzed by formulating the
governing equations in either an inertial frame or a non-
inertial frame. The frame of reference is usually chosen
depending upon the problem at hand. Thus one would
normally choose an inertial frame to study the flow over
a stationary airfoil in a uniform flow and a non-inertial
frame to study the flow through a compressor or turbine
as well as oceanographic and atmospheric flows. In the
later case the particular non-inertial frame would be a
rotating frame. In the general case of non-inertial frame
it is possible to have coordinate lines that rotate, translate,
and deform. While casting the governing equations to de-
scribe the flow in a non-inertial frame there are two choices
regarding the velocity vector. Either it can be the velocity
vector with respect to the absolute (inertial) frame, hereaf-
ter called the absolute velocity vector for brevity, or it can
be the velocity vector with respect to the relative (non-
inertial) frame, hereafter called the relative velocity vector
for brevity. Depending upon this choice various formula-
tions result.

The classical formulation of a flow in a rotating frame
(see for example, Gill [1]) utilizes the relative velocity

vector and casts the governing equations with respect to
the rotating frame, resulting in two source terms, viz., the
Coriolis force term and the centrifugal force term. It is
possible to express the centrifugal force term as the gradi-
ent of a potential and so the Coriolis force remains as the
only true source term in this formulation. For the case of
a self-rotating gravitational body such as the earth, the
centrifugal force is accounted for in its gravity. Until now
this is the formulation used by the majority of researchers
to solve oceanographic flow problems. However, as has
been shown in this work a simple tensor identity can be
used to cast the governing equations in a rotating frame
in the so-called strong conservative form. This opens up
new possibilities of building alternate numerical ap-
proaches to solving the governing equations in a rotat-
ing frame.

The classical formulation of the governing equations
in a rotating frame is just one particular way of solving
oceanographic flow problems. A time marching approach
using this set of equations would solve for the components
of the relative velocity vector at every time step. An alter-
nate approach would be to solve the governing equations
cast using the absolute velocity vector in the local time
derivative term. A time marching scheme using this set of
equations would solve for the components of the absolute
velocity vector at every time step. The formulation pre-
sented by Vinokur [2] (see Eq. (2.9) below) utilizes the
absolute velocity vector and casts the equations in a strong
conservative form (i.e. without source terms) to describe
the flow in a general non-inertial frame. This formulation
uses the unsteady Eulerian coordinates for describing a
compressible flow from which the analogous equations for
incompressible flows can be derived by setting the density
to be constant.

The classical formulation in the rotating frame as well
as the formulation of Vinokur [2] expresses the governing
equations using the Eulerian description, and that pro-
vides an additional choice in the formulation through the
local time derivative. The formulation of Vinokur [2]
expresses the local time derivative in the absolute frame,
whereas the classical formulation of a flow in a rotating
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frame expresses the local time derivative in the rotating
frame. Agarwal and Deese [3] have applied the formula-
tion of Vinokur [2] for a rotating frame and expressed
the local time derivative in the relative frame and put
forth a formulation where only half of the Coriolis force
is expressed as the source term and the other half is
absorbed in the divergence term. The present work can
be considered as an extension of the formulation of
Agarwal and Deese [3] in the sense that the remaining
half of the Coriolis force has also been absorbed into
the divergence term so that the momentum equation of
an incompressible flow in a rotating frame is cast in the
strong conservative form. From a theoretical point of
view all these formulations are equivalent. But from a
numerical point of view there are differences between
these formulations. For example, a steady flow in a rotat-
ing frame would appear as an unsteady flow in an absolute
frame. Thus time accurate solutions are needed if one is
expressing the local time derivative with respect to the
absolute frame with absolute velocity components. There
exists a large amount of literature (see, for example, Yee
[4]) that discusses the effect of source terms on a numeri-
cal scheme. Experience reported in Ref. [4] by various
authors has shown that it is always advantageous to avoid
the source terms, if possible, and cast the governing
equations in the strong conservative form.

From a numerical point of view, one of the advantages
of expressing the Coriolis term in a conservative form, in
other words, in a divergence form, is that it fits in a natural
manner in a finite volume scheme, since fluxes are evalu-
ated at the cell faces in such a scheme whereas source terms
need to be evaluated at cell centers. A more important
advantage is that in a higher order numerical approxima-
tion of the fluxes the Coriolis term naturally enters the
flux Jacobian matrix, as can be seen from the Appendix,
and a higher order representation for the Coriolis term is
thus possible.

It is shown that the momentum equations in the rotating
frame can be cast either with the absolute velocity vector
appearing in the local time derivative or with the relative
velocity vector appearing in the local time derivative,
where, in both cases, the local time derivative itself is
expressed with respect to the rotating frame. Both of the
formulations are numerically examined together with the
formulation where half of the Coriolis force is treated as
a source term. The resulting momentum equations are
coupled with the continuity equation using the modified
artificial compressibility method.

2. MATHEMATICAL FORMULATION

The momentum equations governing the (oceanic) flows
over earth, which is a self-rotating gravitational body, in

non-dimensional tensor invariant form is given by (see, for
example, Gill [1])

­̂v
­t

1 = ?Fvv 1 pĨ 2
1

Re0
s̃G1 2V 3 v 1 b 5 0, (2.1)

where v 5 v*/U0 is the non-dimensional velocity vector
with respect to the rotating frame, t 5 tU0/L is the non-
dimensional time, p 5 (p* 2 p0)/%0U2

0 is the non-dimen-
sional pressure, V is the angular velocity of the rotating
frame, s̃ is the Stokes tensor, and b is the body force. Re0

is the Reynolds number, and Re0 5 %0U0L/e0 , where %0

is a reference density, U0 is a reference velocity, L is a
reference length, and e0 is a reference coefficient of viscos-
ity. A tilde over a quantity denotes that it is a tensor and
boldface denotes that it is a vector. The Stokes tensor is
given by

s̃ 5 e(=v 1 =Tv) (2.2)

where e 5 e*/e0 is the non-dimensional coefficient of
viscosity. The superscript ‘‘T’’ in Eq. (2.2) denotes the
transpose operation. The only body force considered is
that due to gravity and is given by b 5 n/Fr2, where Fr is
the Froude number given by Fr 5 U0/ÏaL, where a is the
acceleration due to gravity and n is the local normal to
the earth’s surface. In Eq. (2.1), ­̂/­t denotes the local
time derivative with respect to the rotating frame. In other
words, if im , m 5 1, 2, 3, are the Cartesian base vectors in
the rotating frame then, by definition,

­̂v
­t

5
­̂(vmim)

­t
5

­̂vm

­t
im (2.3)

It can be easily verified that

V 3 v 5 v ? =(V 3 r), (2.4)

where r is the radius vector from the origin of the rotating
frame. Using the tensor identity for any two vectors a and
b (see Morse and Feshbach [5]),

= ? (ab) 5 a ? (=b) 1 b(= ? a), (2.5)

and the fact that = ? v 5 0, which follows from the conserva-
tion of mass, it is seen that

V 3 v 5 2= ? (vw), (2.6)
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429THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

where w 5 2V 3 r. Therefore, Eq. (2.1) can be written
as

­̂v
­t

1 = ?Fv(v 2 2w) 1 p9Ĩ 2
1

Re0
s̃G5 0 (2.7)

Note that the body force has been combined with the
pressure by using the body force potential in the manner
prescribed by Beddhu et al. [6], that is, p9 5 p 1 x/Fr2,
where x is the body force potential due to gravity. Equa-
tion (2.7) is the strong conservative formulation of the
Navier–Stokes equation for incompressible flows in a
rotating frame. To the authors’ best knowledge this is
the first time the Navier–Stokes equations have been
presented in a rotating frame without both source terms.
Note that such a formulation is not possible for com-
pressible flows since = ? v ? 0. The continuity equation
in the modified artificial compressibility method [6] is
given by

­̂p9

­t
1 b= ? v 5 0 (2.8)

where b is the artificial compressibility parameter.
Even though Eqs. (2.8) and (2.7) form a complete set of

governing equations for solving the oceanic flow problems,
further insight into the alternative formulations of the mo-
mentum equation available for solving the geophysical flow
problems can be gained by looking at an alternate deriva-
tion, starting from the governing equations with respect to
an arbitrary non-inertial frame. Since a generalized setting
is considered, the strong conservative form of the govern-
ing equations is presented for the case of a rotating frame
in a gravitational field (a turbomachinery problem, for
example), in addition to the case of a self-gravitating, rotat-
ing body such as the earth.

The momentum equation for viscous, incompressible
flows in a non-inertial frame of reference in a gravitational
field, in a non-dimensional, vector invariant form is given
by (see, for example, Warsi [7])

1

Ïg

­(Ïgu)
­t

1 = ?Fvu 1 pĨ 2
1

Re0
s̃G1 b 5 0, (2.9)

where Ïg is the Jacobian of the coordinate transformation,
u 5 u*/U0 is the non-dimensional velocity vector in the
absolute frame, v 5 u 1 w is the non-dimensional velocity
vector relative to the moving frame, w is the non-dimen-
sional grid speed vector, and other quantities are as defined

previously. The Stokes tensor is given by

s̃ 5 e(=u 1 =Tu). (2.10)

It must be noted here that Warsi [7] follows the linear
transformation representation (see Truesdell and Noll [8])
for representing tensors whereas this work has adopted
the dyadic product representation (see Morse and Fesh-
bach [5]) for representing tensors. Hence, the equations
found in Ref. [7] are suitably modified to fit the representa-
tion adopted in this work.

Since a rotating frame is a particular case of non-inertial
frames for which Eq. (2.9) is applicable, it must be possible
to derive the momentum equation in a rotating frame from
Eq. (2.9). However, the concept of grid speed is not valid
with respect to an observer situated in the rotating frame
since the grid does not move with respect to him/her.
Following Warsi [7], instead of considering w as the grid
speed, one poses the question of what form of w in Eq.
(2.9) would result in the Navier–Stokes equations in a
rotating frame. It is an exercise problem in Ref. [7] to show
that substituting w 5 2V 3 r, where V is the angular
velocity of the rotating frame and r is the radius vector
from the origin of the rotating frame in Eq. (2.9), results
in the classical rotating frame equation in a gravitational
field, i.e., the centrifugal force term, V 3 (V 3 r), which
has to be added to the left-hand side of Eq. (2.1). Hence,
in order to arrive at Eq. (2.1) this term has to be subtracted
from Eq. (2.9) to obtain

1

Ïg

­(Ïgu)
­t

1 = ?Fvu 1 pĨ 2
1

Re0
s̃G

(2.11)
1 b 2 V 3 (V 3 r) 5 0.

It is emphasized that now Eq. (2.11) is applicable only to
self-gravitating, rotating bodies like the earth. Note that
the time derivative in Eq. (2.11) is still with respect to the
inertial frame. Equation (2.11) is the appropriate equation
to be used when the rotation of the earth is prescribed
through grid motion. In addition to the rotation of the
earth, one can also include the effects of the evolving free
surface using moving grids in a natural manner. For the
case of a rotating frame with a constant angular velocity,
V, using the relations given in Section 3.10B of Ref. [7],
it can be proved easily that

1

Ïg

­(Ïgu)
­t

5
­̂u
­t

1 V 3 u (2.12)

where ­̂/­t denotes the local time derivative with respect
to the rotating frame. Equation (2.11) can now be re-



written, using Eq. (2.12), as

­̂u
­t

1 = ?Fvu 1 p9Ĩ 2
1

Re0
s̃G1 V 3 v 5 0, (2.13)

where v 5 u 1 w 5 u 2 V 3 r is the velocity with respect
to the rotating frame. Note that the body force has been
combined with the pressure by using the body force poten-
tial as before. Substitution of Eq. (2.6) in Eq. (2.13) re-
sults in

­̂u
­t

1 = ?Fv(u 2 w) 1 p9Ĩ 2
1

Re0
s̃G5 0. (2.14)

Equation (2.14) is an alternate strong conservative form
of the Navier–Stokes equations in a rotating frame, appli-
cable for a self-gravitating, rotating body like the earth.
Note that Eq. (2.7) can be recovered from Eq. (2.14) by
substituting u 5 v 2 w 5 u 1 V 3 r. The main difference
between Eqs. (2.7) and (2.14) is that in a time marching
approach one would solve for the relative velocity compo-
nents using Eq. (2.7), whereas one would solve for the
absolute velocity components using Eq. (2.14). The conti-
nuity equation in the modified artificial compressibility
method [6] is given by

­̂p9

­t
1 b = ? u 5 0, (2.15)

where b is the artificial compressibility parameter.
So far, the discussion is focused on deriving the govern-

ing equations appropriate for geophysical flows. In other
words, the governing equations (2.7) and (2.14) are appro-
priate for flows over bodies, such as the earth, which are
self-rotating and self-gravitating bodies. That is, they rotate
on their own accord and have their own gravity fields.
However, there are bodies of practical interest, such as a
turbomachine, that rotate in an external gravitational field.
In the case of the earth, the centrifugal force that arises
due to the rotation of the earth is combined with Newton’s
law of gravitation to arrive at an effective value of the
acceleration due to gravity, viz, 9.81 m/s2. In the case of
a turbomachine in an external gravitational field, however,
one has to account for the centrifugal force created by
the rotating parts of the machine explicitly, regardless of
whether one considers the effect of the external gravita-
tional field or not. In the next paragraph the governing
equations are given for the case of a rotating frame in a
gravitational field. To fix ideas, one can consider the rotat-
ing frame to be a turbomachine. If one is not interested

in accounting for gravity then all one needs to do is to
replace p9 by p in Eq. (2.16).

Agarwal and Deese [3] derived the compressible Euler
equations analogous to Eq. (2.13) for a rotating frame in
a gravitational field (whose effects were neglected) and so
had V 3 u instead of V 3 v as the source term. For the
sake of completeness it is mentioned here that for the
general case of a rotating frame in a gravitational field
the analogous strong conservative form of the momentum
equation is

­̂u
­t

1 = ?Fvu 2 uw 1 p9Ĩ 2
1

Re0
s̃G5 0. (2.16)

The starting point for obtaining Eq. (2.16) is Eq. (2.9).
Note that the second term within the divergence operator
in Eq. (2.16) is 2uw whereas it is 2vw in Eq. (2.14). Note
also that 2uw 5 2vw 1 ww, and it can be easily verified
using the relations provided earlier in this paper that
= ? [ww] 5 V 3 (V 3 r). Since the case being considered
in this paragraph is a rotating frame in a gravitational field
(like a turbomachine, say), as opposed to the case of a
self-rotating gravitational field (like the earth) which was
considered earlier, the term V 3 (V 3 r) which was sub-
tracted earlier in Eq. (2.11) should be added back to it,
and that is what leads one to Eq. (2.16).

The fully conservative formulation of the momentum
equation is given in the compact vector and tensor nota-
tions, thus far. However, in order to solve the equations,
numerically or otherwise, one has to write the momentum
equation in its component form. When resolving the
momentum equation into component form one is pre-
sented with many choices. These choices arise due to the
fact that the vector and tensor quantities can be expressed
with respect to any set of coordinates independent of
the coordinates one chooses to express the divergence
operator itself. Traditionally, however, the set of coordi-
nates chosen for resolving the vector and tensor quantities
is the same as the one chosen for expressing the diver-
gence operator. Thus, Cartesian velocity components are
chosen when the divergence operator is expressed in
Cartesian coordinates, cylindrical components are chosen
when the divergence operator is expressed with respect
to cylindrical coordinates, and so on. The problem, for
example, with choosing cylindrical components of the
vector and tensor quantities when expressing the diver-
gence operator in cylindrical coordinates is that Christoffel
symbols appear explicitly, thereby preventing the conser-
vative formulation in the component form. Therefore, if
one wants to come up with a conservative formulation
in the component form also there is only one choice.
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431THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

That choice is to express the vector and tensor quantities
in Cartesian components, no matter what coordinates are
chosen to express the divergence operator. Since non-
orthogonal curvilinear coordinates are the most general
coordinates, the divergence operator is expressed with
respect to such a coordinate system in this paper. The
resulting equations are given in (A.1) (see the Appendix).
The code UNCLE.OMAS (unsteady computation of field
equations–old man and the sea) is written to solve Eqs.
(A.1). Thus, suppose one is interested in the flow over
a sphere. Then one can construct a grid based on spherical
coordinates and the appropriate metrics will automatically
be computed. However, the real advantage of this ap-
proach is that one does not have to create a grid based
on spherical coordinates. As long as the body shape is
maintained spherical, any set of coordinate lines can be
created, analytically or numerically, and the same code
can be used to solve the flow field.

Even though Eq. (2.9) (after expressing the body force
in terms of the body force potential) and Eq. (2.16) are in
fully conservative form and a time marching scheme in
both cases would solve for the absolute velocity compo-
nents, the important difference between them is the posi-
tion of the observer. While in the case of Eq. (2.9) the
oberver is situated in the inertial frame, he/she is situated
in the rotating frame in the case of Eq. (2.16). Thus the
grid remains stationary in the case of Eq. (2.16) whereas
the grid has to be moved and all the metrics need to be
recomputed at each time step in the case of Eq. (2.9).
Steady flows in the rotating frame can be computed using
time inaccurate schemes using Eq. (2.16), whereas they
require time accurate computation of Eq. (2.9).

A time marching upwind scheme for the set of equations
(2.14) and (2.15) would typically solve for the pressure and
the Cartesian components of the absolute velocity vector.
Either one can solve the set of equations (2.14) and (2.15),
or the set (2.7) and (2.8), by the numerical method pre-
sented in the following section. For both sets remarkably
similar sets of eigensystems are derived. These eigensys-
tems again differ from that derived by Taylor [9] for Eq.
(2.9) only slightly which results in minimum code modifica-
tions.

The solution procedure for the set of equations (2.14)
and (2.15) is called the absolute-velocity procedure and
that for the set of equations (2.7) and (2.8) is called the
relative-velocity procedure. Because of the choice of the
equations the solution procedure as presented here is
valid for geophysical flows only. For turbomachinery type
flows one could derive analogous procedures using Eq.
(2.16) instead of Eq. (2.15). An important element in
the present formulation is the construction of the inviscid
fluxes at the cell interfaces. The theory behind the
construction of the inviscid fluxes has been well estab-

lished by Roe [10], van Leer [11], and others. Therefore,
only the tools needed for constructing the inviscid fluxes
are provided in Appendix A. The numerical method to
be described has been presented in detail elsewhere
[9, 12–14]. Only a brief description is given in the
next section.

3. NUMERICAL PROCEDURE

The numerical scheme used in this study is similar to that
proposed by Pan and Chakravarthy [12] and is discussed in
detail by Taylor [9] and Whitfield and Taylor [13]. An
extensive discussion of the methodology applicable to two-
dimensional flows has been presented by Whitfield and
Taylor [14]. The approach taken in this work is to solve Eq.
(A.1) implicitly using the discretized Newton-relaxation
(DNR) scheme [13], where the fluxes at the cell faces are
obtained using the Roe scheme [10] with higher order
accuracy achieved using the MUSCL approach (van Leer
[11]; Whitfield and Taylor [14]). Writing Eq. (A.1) in the
discrete form, one has

3 Qn11 2 4 Qn 1 Qn21

2 Dt

1 F n11
i11/2 2 F n11

i21/2 1 Gn11
j11/2 2 Gn11

j21/2

1 Hn11
k11/2 2 Hn11

k21/2 1 F vn11

i11/2 2 F vn11

i21/2

(3.1)

1 Gvn11

j11/2 2 Gvn11

j21/2 1 Hvn11

k11/2 2 Hvn11

k21/2 5 0

where F n11
i11/2 5 F(Qn11

i21 , Qn11
i , Qn11

i11 , Qn11
i12 ) and so on. Note

that for a higher order flux representation F n11
i11/2 depends

on Qn11
i21 and Qn11

i12 as well. If Eq. (3.1) is expanded for each
grid cell, a system of algebraic equations are obtained in
terms of qn11 at each grid cell where qn11 5 Qn11/Ïg n11.
Strictly speaking, F n11 is a function of both qn11 and the
metrics at n 1 1. Since the metrics at n 1 1 are known, no
linearization needs to be done with respect to the metrics.
Hence Eq. (3.1) is regarded as a function of qn11 alone. In
functional form, Eq. (3.1) can be represented as

X(qn11) 5 0. (3.2)

Solving Eq. (3.2) involves finding the roots of a system
of non-linear algebraic equations. Using Newton’s method,
the solutions of Eq. (3.2) are obtained from the linear equa-



tions

S­X
­qDn11,m

(qn11,m11 2 qn11,m) 5 2X(qn11,m). (3.3)

In order to limit the band width of the matrix, the operator
(­X/­q) is obtained using higher order fluxes in a special
manner and is rearranged along the lines of Whitfield
and Taylor [14] into a strong diagonal form. The viscous
flux Jacobians are obtained using the thin layer approxi-
mation, whereas the residue X(qn11,m) contains all the
viscous terms. Within each Newton iteration, symmetric
Gauss–Seidel passes are used. The resulting algorithm
is termed the discretized Newton-relaxation procedure.
When the iteration in m converges, qn11 is obtained and
the calculation procedure is extended to the next time
level. As the iteration in m converges, the LHS of Eq.
(3.3) goes to zero. Hence time accuracy is introduced
into the scheme by multiplying the local time derivative
term in X(qn11,m) by a conditioning matrix Ia where
Ia 5 diag(0, 1, 1, 1). The inviscid fluxes on the RHS of
Eq. (3.3) are obtained by using a third order MUSCL-
type flux and the viscous fluxes by using a second order
central differencing.

4. RESULTS

Ekman boundary layer solutions are classical solutions
of the equations that govern geophysical flows. A detailed
description of these problems and their solutions can be
found in Pedlosky [15]. A Cartesian coordinate system
xyz is introduced in a rotating frame such that the y-axis
coincides with the axis of rotation. A geostrophic flow is
assumed to be in the z-direction. In the far field, the flow
is geostrophic with the following values for the non-dimen-
sional quantities: u 5 0, v 5 0, w 5 1, and ­p/­x 5 22.
Here the velocity components are with respect to the rotat-
ing frame. The velocity components in the absolute frame
are obtained by adding the corresponding components of
V 3 r to the components of the relative velocity vectors.
Suppose NI is the maximum number of points in the
x-direction (I-direction). In the cell-centered finite volume
formulation, Dq’s, where Dq 5 qn11 2 qn, with q any flow
variable, are updated from cell 2 to cell NI. Boundary
conditions are specified in the fictitious (or phantom) cells
at 1 and NI 1 1. When solving for Dq’s in cells 2 to NI
using the upwind scheme, the Dq’s at cells 1 and NI 1 1
are required (Fig. 1). Usually these quantities are taken
as zero. In order to impose the one-dimensionality of the
problem and to eliminate any bias introduced by the up-
wind scheme, the following periodicity conditions were
used: X1 5 XNI and XNI11 5 X2 . A similar treatment is
done in the z-direction (K-direction) also. The Reynolds

number was taken to be 10,000. Since Ekman boundary
layers correspond to the rigid lid condition the Froude
number has no effect on the solution.

Three procedures were used to compute the velocity
profiles: (1) the absolute-velocity procedure, (2) the rela-
tive-velocity procedure, and (3) the source-term procedure
where the source term in Eq. (2.13) is added to the code
developed by Taylor [9]. The absolute-velocity procedure
and the relative-velocity procedure converge in the same
manner in 2000 cycles to the exact solution using a time step
of 0.05. At viscous boundaries the pressure is extrapolated
from the interior. The source-term procedure with a time
step of 0.005 diverged after 10,000 cycles when the pressure
was extrapolated from the interior. However, when the
pressure was prescribed as 22x at the viscous boundaries
it converged to the correct solution. This indicates that the
source term seems to corrupt the pressure gradient at the
wall. The results shown were obtained using the relative-
velocity procedure.

4.1. Viscous Wall

The computational domain is a rectangular parallelepi-
ped bounded by the planes x 5 0, x 5 1, z 5 0, z 5 1,
y 5 0, and y 5 5. Uniform spacing was used in the x
and z directions and the grid lines were stretched in the
y-direction with a spacing of 0.001 near the viscous surface
(y 5 0.0), see Fig. 2. The grid size is 51, 101, 5 points in
the x, y, and z directions respectively. Linear extrapolation
boundary conditions were used on all the side boundaries.
This treatment of the side wall boundaries was chosen
since it is known that the exact solution for the velocity
components is independent of the x and z directions and
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the pressure is a linear function of x. The inviscid (i.e.,
geostrophic) solution was imposed at the top boundary.
At the bottom boundary, no-slip velocity and zero pres-
sure gradient boundary conditions were imposed. Starting
from an initial condition of geostrophic flow everywhere,
convergence to the exact solution was achieved in 2000
cycles using a time step of 0.05. Figure 3 shows the
comparison of the computed results with the exact solu-
tion. Note that the stretched y-coordinate, y 5 y/ÏRe,
is used in the figure. It can be seen that the agreement
is excellent.

4.2. Free Surface with an Applied Shear Stress

The computational domain and the number of points
are the same as before except that the y 5 5.0 boundary
was used to impose the wind stress and consequently the
grid points were packed near that boundary in the y-direc-
tion. The lateral boundary conditions are the same. At the
bottom boundary the known inviscid (i.e., geostrophic)
flow was imposed. The main idea in the application of the
viscous free surface stress condition is to use a set of local
orthonormal coordinates at every grid point on the free
surface to implement the stress boundary condition. This
is because the stress boundary conditions take the simplest
form in an orthonormal coordinate system. Figure 4 shows
the comparison of the computed results with the exact
solution. To conform with the figure given in Ref. [15], the
ordinate in Fig. 4 was obtained as y 5 (5.0 2 y)/ÏRe

during the postprocessing of the results. It can be seen that
the agreement is excellent.

5. CONCLUSION

A new formulation of the Navier–Stokes equations in
the rotating frame using relative velocity components has
been presented in which no source terms appear. This
leads to a numerical scheme that is very similar to the
one formulated for the Navier–Stokes equations in the
absolute frame using absolute velocity components. For
geophysical flows both the absolute velocity procedure
and the relative velocity procedure seem to be equally
efficient. The relative velocity procedure is being applied
to the computation of the flow field in the Atlantic ocean
with the wind stresses prescribed from the European
Center for Medium Range Weather Forecasts dataset
[16]. Application of the Navier–Stokes equations to the
computation of oceanic flows is still in an infantile stage.
For a related work that uses a non-hydrostatic model to
study the evolution of plumes one may refer to Helen
and Marshall [17].

APPENDIX A: FLUX FORMULATION

The absolute velocity procedure is dealt with in detail.
The relative velocity procedure can be similarly treated,
and it is briefly outlined following the discussion of the
absolute velocity procedure.

FIG. 3. Ekman boundary layer with a no slip wall: Re 5 10000; rotation is about the y-axis.



A.1. Absolute-Velocity Procedure

Equations (2.14) and (2.15) can now be expressed in a
curvilinear coordinate system (j, h, z, t), using the so-
called partial transformation where all the tensor and vec-
tor quantities within the divergence terms are expressed
with respect to the underlying Cartesian coordinates
whereas the divergence itself is expressed in curvilinear
coordinates, which can further be cast into the numerical
vector form which results in

­Q
­t

1
­F
­j

1
­G
­h

1
­H
­z

1
­F v

­j
1

­Gv

­h
1

­Hv

­z
5 0, (A.1)

where

Q 5 Ïg 3
p9

u

v

w
4 ; F 5 Ïg 3

bu1

u9(u1 1 jt) 1 p9jx

v9(u1 1 jt) 1 p9jy

w9(u1 1 jt) 1 p9jz

4 ;

F v 5 Ïg 3
0

sxxjx 1 sxyjy 1 sxzjz

sxyjx 1 syyjy 1 syzjz

sxzjx 1 syzjy 1 szzjz

4 ;

u1 5 ujx 1 vjy 1 wjz ;

u, v, and w are the components of the absolute velocity
vector with respect to a Cartesian coordinate system;
and u9, v9, and w9 are the Cartesian components of the
vector u 2 w; sxx , etc., are the Cartesian components of
the Stokes tensor; and jx , jy , and jz are the Cartesian
components of the contravariant base vector grad j. Ex-
pressions for G and H are similar to F and can be
obtained from F by replacing j with h and z respectively.
Similarly, Gv and Hv can be obtained from F v. By defining
the flux Jacobians as A 5 ­F/­q; B 5 ­G/­g; C 5
­H/­q and denoting the generic flux Jacobian by K,
one obtains

K 5 Ïg 3
0 bkx bky bkz

kx uk 1 u9kx u9ky u9kz

ky v9kx uk 1 v9ky v9kz

kz w9kx w9ky uk 1 w9kz

4 (A.2)

where uk 5 kt 1 ukx 1 vky 1 wkz and kt 5 w ? ak where
ak is the contravariant base vector on the k 5 constant
face. When k 5 j, K 5 A; when k 5 h, K 5 B; and when
k 5 z, K 5 C. In order to find the eigenvalues of K, the
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FIG. 4. Ekman boundary layer with applied shear stress at the free surface: Re 5 10000; rotation is about the y-axis.
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following matrix M and its inverse M21 are used to form
the matrix k 5 MKM21.

1 0 0 0 1 0 0 0

1 10 0 0 02
u9

b
u9

bM 5

00 1 0

M21 5

102
v9

b
v9

b

10 0 0 0 1
w9

b
2

w9

b

3 4 3 4
The matrix k is given by

k 5 Ïg 3
uk 2 2kt bkx bky bkz

kx 1
u9uk

b
uk 0 0

ky 1
v9uk

b
0 uk 0

kz 1
w9uk

b
0 0 uk

4 . (A.3)

The eigenvalues of K and k are the same since they are
similar matrices. However, it is much easier to find the

eigenvalues of k rather than those of K, and these are
found to be

l1,2 5 uk

l3 5 uk 2 kt 1 c

l4 5 uk 2 kt 2 c
6 , (A.4)

where

c 5 Ï(uk 2 kt)2 1 b(k2
x 1 k2

y 1 k2
z).

Following Taylor [9], in order to obtain the left and right
eigenvectors of K, first the left and right eigenvectors of
k are obtained. They are the columns and rows of the
following matrices respectively:

Pk 5 3
0 0 2c̃2 2c̃1

x1
p

x2
p

f1 f1

y1
p

y2
p

f2 f2

z1
p

z2
p

f3 f3
4

P21
k 5

1
f 3

0 2c̃f4 22c̃f5 2c̃f6

0 22c̃f7 2c̃f8 22c̃f9

f

2c̃
2kxc̃1 2kc̃1 2kzc̃1

2
f

2c̃
22kxc̃2 22kyc̃2 22kzc̃2

4 ,

where

f1 5 k̃x 1
u9ũk

b
f2 5 k̃y 1

v9ũk

b
f3 5 k̃z 1

w9ũk

b

f4 5 y2
p

f3 2 z2
p

f2 f5 5 x2
p

f3 2 z2
p

f1 f6 5 x2
p

f2 2 y2
p

f1

f7 5 y1
p

f3 2 z1
p

f2 f8 5 x1
p

f3 2 z1
p

f1 f9 5 x1
p

f2 2 y1
p

f1

x1
p

5
x1

Ïgu=ku
y1
p

5
y1

Ïgu=ku
z1
p

5
z1

Ïgu=ku

x2
p

5
x2

Ïgu=ku
y2
p

5
y2

Ïgu=ku
z2
p

5
z2

Ïgu=ku

u=ku 5 Ïk2
x 1 k2

y 1 k2
z and f 5

4c̃
b

(b 1ũk(ũk 2 2k̃t)),

(x1, y1, z1) and (x2, y2, z2) are the diagonal vectors on
the k 5 constant face [9]. In this section, a tilde over a
quantity denotes that the metrics used in computing that
quantity are normalized with the area of the cell face. The
left and right eigenvectors of the flux Jacobians K are
obtained as Tk 5 MPk and T 21

k 5 P21
k M 21 where the left

eigenvectors are given by the rows of T 21
k , and the right



eigenvectors are given by the columns of Tk respectively.
The matrices Tk and T 21

k are

Tk 5 3
0 0 x̃2 2c̃1

x1
p

x2
p

k̃x 1
u9l̃3

k

b
k̃x 1

u9l̃4
k

b

y1
p

y2
p

k̃y 1
v9l̃3

k

b
k̃y 1

v9l̃4
k

b

z1
p

z2
p

k̃z 1
w9l̃3

k

b
k̃z 1

w9l̃4
k

b

4
T 21

k 5
1
f3

2c̃
b

(2u9f4 1 v9f5 2 w9f6) 2c̃f4 22c̃f5 2c̃f6

2c̃
b

(u9f7 2 v9f8 2 w9f9) 22c̃f7 2c̃f8 22c̃f9

2
b

(b 1 l̃4
k(ũk 2 2k̃t)) 2c̃1k̃x 2c̃1k̃y 2c̃1k̃z

2
2
b

(b 1 l̃3
k(ũk 2 2k̃t)) 22c̃2k̃x 22c̃2k̃y 22c̃2k̃z

4
The quantity TL2T 21dq which is required in the Roe flux
formulation [10] is given by

TL2T 21dq 5 3
l4

kr14R4

l4
kr24R4 2 l1

k(r24R4 1 r23R3 2 du)

l4
kr34R4 2 l1

k(r34R4 1 r33R3 2 dv)

l4
kr44R4 2 l1

k(r44R4 1 r43R3 2 dw)
4

where

R3 5 l31dp 1 l32du 1 l33dv 1 l34dw;

R4 5 l41dp 1 l42du 1 l43dv 1 l44dw;

(l31 , ..., l34) and (l41 , ..., l44) are the 3rd and 4th left eigenvec-
tors (that is, 3rd and 4th rows of T 21

k ); and (r13 , ..., r43)T

and (r14 , ..., r44)T are the 3rd and 4th right eigenvectors
(that is, 3rd and 4th columns of Tk). The quantity dq is
given by dq 5 qR 2 qL where qR and qL are defined using
a MUSCL type approach [11, 14].

A requirement of the theory behind this numerical
scheme is that the first order fluxes satisfy the property U
defined by Roe [10]. It can be easily verified, by direct
substitution, that the Roe averages, defined by f 5 (fi 1
fi11)/2 where f is any flow variable and the components
of w at cell centers i and i 1 1 are taken to be the same
as that at the cell face i 1 1/2, satisfy the relation Fi11 2

Fi 5 A(f)[Qi11 2 Qi] where F is the flux and A is the
flux Jacobian.

A.2. Relative-Velocity Procedure

Equations (2.7) and (2.8) can now be cast into the numer-
ical vector form which results in the same form as (A.1).
However, the interpretation of the various symbols denot-
ing the velocity components are as follows: u, v, w are the
components of the relative velocity vector (v) with respect
to a Cartesian coordinate system and u9, v9, and w9 are the
Cartesian components of the vector v 2 2w. (Note that w
denotes the vector 2V 3 r, whereas w denotes a Cartesian
component of the absolute or relative velocity vector de-
pending upon the context.) The analysis of the previous
section carries through and the flux Jacobians as well as
eigenvectors retain the same form as that given by the
matrices K, k, Tk , and T 21

k respectively. The eigenvalues
of this system are given by

l1,2 5 uk

l3 5 uk 2 kt 1 c

l4 5 uk 2 kt 2 c
6 (A.5)

where

uk 5 ukx 1 vky 1 wkz and

c 5 Ï(uk 2 kt)2 1 b(k2
x 1 k2

y 1 k2
z).
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Note that the definition of uk is different from that of the
absolute-velocity procedure. kt is the same as before.

It follows from the above analysis that with a minimum
code modification of a few lines, one can solve for either
the absolute velocity components or the relative velocity
components.
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